Practical Physical Layer Techniques for 4 G Systems & Beyond
نویسندگان
چکیده
We quantify cell-wide mean throughputs of single-input-single-output (SISO) and multiple-inputmultiple-output (MIMO)-based cellular systems which employ multi-user diversity (MuD). Our study considers several practical and useful system-level design dimensions, including: number of transmit/receive antennas; antenna-pattern (omni-directional or sectorized); degree of error-protection (Shannon coding, no coding or intermediate coding strategies); allowable constellation size; Rician κ-factor; number of users and schedluling algorithm (Greedy (i.e. MAX C/I), Proportional Fair, or Equal Grade of Service) in singlecell (noise-limited) and multi-cell (co-channel-interferencelimited) environments. We also provide a comparison between single-user systems having excess receive antennas and multi-user diversity systems with no excess receive antennas. Both strategies improve signal quality. Since economic costs of RF chains, mobile size and form factor limit the number of antennas a mobile receiver can have, multi-user diversity can be a more practical option. We observe that MuD with only a few scheduled users leads to comparable throughputs as receivers with excess receive antennas. By quantifying the average throughput gains that accrue from using multi-user SISO and MIMO-based cellular systems, this study serves the needs of operators to assess these promising technologies.
منابع مشابه
Analysis of Short Blocklength Codes for Secrecy
In this paper we provide secrecy metrics applicable to physical-layer coding techniques with finite blocklengths over Gaussian and fading wiretap channel models. Our metrics go beyond some of the known practical secrecy measures, such as bit error rate and security gap, so as to make lower bound probabilistic guarantees on error rates over short blocklengths both preceding and following a secre...
متن کاملDistance-Aware Beamforming for Multiuser Secure Communication Systems
Typical cryptography schemes are not well suited for low complexity types of equipment, e.g., Internet of things (IoT) devices, as they may need high power or impose high computational complexity on the device. Physical (PHY) layer security techniques such as beamforming (in multiple antennas systems) are possible alternatives to provide security for such applications. In this paper, we consid...
متن کاملIntroduction to Schramm-Loewner evolution and its application to critical systems
In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...
متن کاملOptimal SVD-based Precoding for Secret Key Extraction from Correlated OFDM Sub-Channels
Secret key extraction is a crucial issue in physical layer security and a less complex and, at the same time, a more robust scheme for the next generation of 5G and beyond. Unlike previous works on this topic, in which Orthogonal Frequency Division Multiplexing (OFDM) sub-channels were considered to be independent, the effect of correlation between sub-channels on the secret key rate is address...
متن کاملStudy on implementation of one-piece lean line design using simulation techniques: A practical approach
This paper discusses the simulation study carried out for proposing one-piece lean line layout with features of Lean Manufacturing. The lean initiatives that can be addressed are, introducing Kanban replenishment sys-tem, better work-in-process, changing the layout, visual management techniques, standardized work for the re-duction of cycle time, number of workers, number of setups. To improve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011